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Abstract

In this research paper, we employ the semi-analytical method
known as the Banach contraction method (BCM) to obtain an
approximate solution for the telegraph equation. This method yields
reliable results in the form of analytical approximations, making it
a highly dependable alternative for finding analytical solutions to
the telegraph equation. The behavior of the equation is evaluated
through computer simulations using MATLAB code.
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1. Introduction

The telegraph equation was originaly introduced by Kirchhoff in
1857, but it was first examined by Poincaré in 1893. The
telegrapher's equation exhibits characteristics of both wave motion
and diffusion. It has numerous important applications in industrial
processes, particularly in the field of communication systems.
Several methods have been employed to solve the telegraph
equation, including the homotopy perturbation method (HPM) [1],
the Daftardar-Gejji-Jafaris method (DGJ) [2], the Laplace transform
(LT) [3], the g-homotopy analysis transform method (g-HATM) [4],
and the reduced differential transform method (RDTM) [5]. In a
previous study [6], Sehgal and Bharucha-Reid proposed a novel
semi-analytical iterative method known as the Banach Contraction
method (BCM). The BCM method, which builds upon the Picard
method, has been successfully applied to solve a wide range of
differential and integral equations [7,8]. In this investigation, we
focus on the telegraph equation and its analysis using the BCM
method. We consider the telegraph equation

0%u 0%u
— a —

ou
o = 453 + bE + cu. @

With the initial conditions

u(x, 0) = f(x),ut(x, 0) = g(x) (2)

where a, b and c denote positive constant, also f(x) and g(x) are
known continues functions.

In this paper, we will implement the BCM to find approximate
solutions for telegraph equation.

2. Banach contraction method

Definition 2.1 [9]: Let (X, d) be a metric space, then a mapping
f:X-X,
(@) A point x € Xis called a fixed point of f if x = f(x).
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(b)f is called contraction if there exists a fixed constant k < 1 such
that

d(f(x), f)) < kd(x,y), for allx,y € X.

A contraction mapping is also known as Banach contraction.
Theorem 2.2 (Bnach contraction principle) [10]:

Let (X, d) be a complete metric space and f: X — X be a contraction
mapping. Then f has a unique fixed point x, and for each x € X, we
have

f(x) =x . (3)
Moreover, for each x € X, we have

d(f™(x), %) <

Theorem 2.3 [10]:
Let f(x,u) be a continuous function on [a, b] X [c, d] such that f
is Lipschitz with respect to u, that is there exists k > 0, such that
lf(e,w) — f(x,v)| <k |u—v| forallu,v € [c,d]and for x €

n

1—

k a(f(x), x).

[a, b].
Banach contraction method 2.4:
Let us consider the general functional equation [9],
u=N@)+f 4)

Where N (u) is a nonlinear operator and f is a known function.
Define successive approximations as
Uy = f,
Uy = ug + N(up),
Uy = ug + N(uy),
uz = ug + N(uy),

U, =ug+Nwu,—1), n=123,... (5)

If N* is contraction for operator some positive integer k, then N (u)
has a unique fixed point and hence the sequence defined by (5) is
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convergent in view of theorem (2.2) and the solution of eq. (3) is
given by u = u,,.

3. Application of the method to the telegraph equation

To solve the telegraph equation using the BCM method we
first convert the equation into an integral equation.
Initially we specify the conditions of the telegraph equation which're
the given values of the variables at the starting point. These initial
conditions are then utilized to transform the equation into an integral
equation.
A Volterra equation is an equation that establishes a relationship,
between the desired function and the integral of the equation. By
applying integration principles to the equation, we can convert it
into an equation. This particular equation involves a function that
needs to be determined.
Subsequently we employ the BCM method to solve this resulting
equation. The BCM method relies on iterations to estimate a value
for our unknown function. We continue this iteration process until
we obtain an approximation, for our desired solution. according to
the initial condition we can converted to the Volterra integral
equation

u(x, t) = f(x,0) + N(w) (6)
We start with the telegraph equation (1)

0%u 0%u ou
—axz—aﬁ+b5+cu. (7)
We obtain
0%u ou 0%u
aﬁ-l‘bg— —axz—cu. (8)

By integrating both sides from 0 to t and substitute for the initial
conditions of the equation, we have
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a%= ag(x) +bf(x)—bu+f0t (Z%f—cu)dt. (9)
Again, by integrating both sides from 0 to ¢, substitute for the initial
conditions of the equation, reducing multiple integrals to a single
integral and division by a , it leads the following integral equation

u(x,t) = f(x) + (g(x) + af ()t + fot %(t —-s) (2271; - cu) —auw)dt. (10)

Where a = Z :
Let F(x,t) = f(x) + (g(x) + af(x))t . (11)
And N =, Clt—s)(22-cu)-auwde, (12)

Implementation of the BCM algorithm gives
uy(x,t) = F(x,t)
(%, t) = up(x, t) + N(up)
Uy (x, t) = up(x, t) + N(uy)

un(xx t) = uO (x, t) + N(un—l) (13)
The BCM admits the use of
u(x, t) = up(x,t)

In other words, the functional (13) will give several approximations,
and therefore the exact solution is obtained as the limit of the
resulting successive approximations.

4. Numerical Examples

To verify and validate the efficiency and reliability of the BCM
method, we give several examples. These examples are chosen from
[5,7] also graphs of comparison between exact and approximate
solution. Now we began with the following examples.

5 Copyright © ISTJ Ak sine qolall (3 s
Ayl g o shell 40 sal) dlaall



International Scienceand ~ VOlUMe 33 aaad) g g ol iyt i

Imtrwaational beimrs mad Taviasiags demraal

e e pET g N

January 2024 s\

82024/ 1 /31 :f ki g gal) o W i &g p2024/1/2 :f i 43 ) gl aSliad) ol

Example 4.1
Consider the linear telegraph equation

9%u _ 0%u

u
72~ g T 25 T 14
Subject to initial conditions

u(x,0) = e*, u,(x,0) = —2e”. (15)

Appling the BCM method to (14),we obtain the following

u(x, t) =e*+ fot ((t — 8)(Uyy — u) — 2u) ds, (16)
Let F(x,t) = e* and N(u) = fot ((t = $)(uyy — w) — 2u)ds.
U, = e*,
Uy = ug + N(u),

t
u, =e*+ f ((t — 5)(Ugyx — Ug) — ZuO)ds.
0
u, = e* —2te*.

t
uZ = ex + j ((t - S)(ulxx - ul) - Zul)ds.
0

4
u, = e¥ —2te* + Etzex.

us; =e* + f ((t — S) (U —Uy) — 2u2)ds.
0

U, = e* —2te* + itzex ———t3e*
3 ) 2 2.3
U, =e* + f ((t — S)(Ugpy — U3) — 2u3)ds.
0
u, = e* —2te* + ftze" 5 t3e* + 16 t*e*
4 2 23 2:3-4
Up = e¥ —2te™ + ~t2e¥ — Sp3e¥ 4o 4 2 ox (17)
2! 3! n!
The BCM admits the use of
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u(xl t) = un ]
That gives the exact solution by

u(x,t) = e¥2t (18)

8 T T T
% exact solutiol
O BCM metho

0 02 04 06 08 1 1.2 14 1.6 1.8 2
X

Figure 1: plot of u with respect to x at 0 and 2 where t=1.

Figure 2: Depiction of solution u in the domain x € [0,2] and ¢t € [0,1].

Example 4. 2
Consider the linear telegraph equation
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Uy = U + 4up + 4u (19
With the boundary conditions

u(0,t) =1+ e 2, u,(0,t) = 2. (20)
Where, the exact solution is

u(x,t) = e 2t +e2* (21)

Integrate both sides of Eq. (19) twice from 0 to x and using the
boundary conditions, we get

u(x,t) =1+2x+e 2t + fox f;c (uee(s, ©) + 4ue(s, t) +
4u(s, t))dsds.(22)
By reducing the double integration to single, we have

u(x,t) =1+2x+e 2 + fox (x — 5) (e (s, £) + 4ue(s, t) +
4u(s,t))ds (23)

And
N@W =[5 (=) (ue(s,t) + 4uc(s,0) + 4u(s, 0))ds  (24)

By implementing the BCM, we obtain the following
uo(x,t) =1+ 2x + e~ 2,
u, (x,t) = uy + N(up).
4x* 8x® 16x* 32x°
u (x,t) =1+ 2x+ > + > + 2 + 2 +e
w0 6) = 1+ 2x + 4x? " 8x3 n 16x* n 32x5 n 64x% = 128x7
Zot 2 2 4 4 8 8

e

2 3 4 5 6
ug(,0) = e+ 1+ 20+ Do+ o B T Sy

128x7
8

(25)
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This close from
u(x,t) = e %t +e%* (26)

Which is the exact solution.

T T
exact solution
- BCM method | 1

Figure 4: Depiction of solution u in the domain x € [0,2] and t € [0,1].

Example 4.3
Consider the nonlinear telegraph equation

Uy X2+t —1=uy +u, +u (27)
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With the initial condition
u(x,0) = x4, u(x,0) = 1. (28)
Where, the exact solution is

u(x,t) = x2 +t. (29)
Integrate both sides of Eq. (27) twice from 0 to t and using the initial
conditions, we get

t2 t2 3 t

u@my:ﬁ(1+t+?)+t—?+§vh% ((t — ) (U —
u) —u)ds (30)

2 2 3
MtF@J)=x%ﬁ+t+%)+t—%+%,

And N = [ ((t =) —w) —u)ds.

t2 t> 3

2
U= x*14+t+—=|+t——=+-,
0 ( 2) 2 3!

u; = ug + N(uyp),
3

=x*(1+t+ e +t e +—t
=2 2 ]

t
+ j ((t - S)(uoxx - uo) - uo)ds.
0
( t* t2  7t3  7t* ¢S

42 _ 43 _ 2 |,2 T T
1—-t*—t 4x+t 2+6+12 2

t2 t2 t3
uf=ﬂ<1+t+?>+t——+——

+ .[t ((t — ) (Uqpy — Uy) — ul)ds.
0
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. . 3t° 5 t2 3t 17t5
U= (1-t*"-200——|x*+t——+—+ —5—

4 2 6 12 6
37t6+t7
8 24
t2 t?2 3
— A2 - - —
U3 =X <1+t+2>+t 2+3!

+ .l- ((t - S)(uZxx - uz) - uz)ds.
0

uz =t- (t2x2)12 + (t3x2)/6 + (t*x?)/8 + (t°x2)/40 +
(t°x2)/720 + x2(t2/2 + t + 1) - tx2- (5t*)/24 - (3t°)/40 - t8/240 +
t7/5040.

Up = x2.(1+t+§)+(1—t2—t3—g)x2+(1—t4—2t5—

3¢ 7 B\, t? e t* 17¢5 | 37t | 55t7
il oD 2 ta-2s 42t S TR T By
5¢8 9

—+ —+

16 48
The BCM admits the use of
ux, t) = uy,
That gives the exact solution by

u(x, t) = x% +t.
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u(x,t)

2t Y
o
R
-
15F e
v/’
-
p
1t e
/'//
0.5t -
O T L 1 1 L L L L L
0 02 04 06 08 1 12 14 16 18 2

Figure 5: plot of u with respect to x at 0 and 2 where t=1.

NO = N @ A 0 O
M .

Figure 6 : Depiction of solution u in the domain x € [0,2] and t € [0,2].

5. Conclusion

In this work, we have applied BCM to solve telegraph equation. The
BCM method applied in three examples whish solved in [5,7], we
obtained good numerical results compared the author methods. In
fact, the method seemed to be quite simple and stable, the method
proves to be applicable and elegant for computer package program.
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